CCS Technical Documentation RH-40 Series Transceivers

System Module

Issue 1 03/2003 Confidential ©Nokia Corporation

RH-40 System Module

NOKIA

CCS Technical Documentation

Contents

A11 2.2	Page N
Abbreviations	
Transceiver RH-40 (2220)	
Introduction	
Operational Modes	
Environmental Specifications	
Normal and extreme voltages	
Temperature Conditions	
Engine Module	
Baseband Module	12
UEM	12
Introduction to UEM	
Regulators	
RF Interface	
Charging Control	
Digital Interface	
Audio Codec	
UI Drivers	
AD Converters	
UPP	
Introduction	
	-
Blocks	
Flash Memory	
Introduction	
User Interface Hardware	
LCD	
Introduction	16
Interface	16
Keyboard	16
Introduction	16
Power Key	
Keys	
Lights	
Introduction	
Interfaces	
Technical Information	
Audio HW	
Earpiece	
Introduction	
Microphone	
Introduction	
Buzzer	
Introduction	
Battery	
Phone Battery	
Introduction	
Interface	
Battery Connector	19

Accessories Interface	. 20
System connector	20
Introduction	. 20
Interface	. 20
Technical Information	. 21
PPH-1 Handsfree	21
Introduction	. 21
Interface	. 21
Charger IF	22
Introduction	. 22
Interface	. 22
Test Interfaces	. 22
Production Test Pattern	22
Other Test Points	23
EMC	. 23
General	
BB Component and Control IO Line Protection	
Keyboard lines	
C-Cover	
PWB	
LCD.	
Microphone	
EARP	
Buzzer	
System Connector Lines	
Battery Connector Lines.	
MBUS and FBUS	
Transceiver Interfaces	
BB - RF Interface Connections	
BB Internal Connections	
UPP Block Signals	
Memory Block Interfaces	
Audio Interfaces	
Key/Display blocks	
Keyboard Interface	
Display Interface	
RF Module	
Requirements	
Design	
Software Compensations	
Main Technical Characteristics	
RF Frequency Plan	
DC Characteristics	
RegulatorsReceiver	
AMPS/TDMA 800 MHz Front End	
Frequency Synthesizers	
Transmitter	48

RH-40

CCS Technical Documentation

System Module

Common IF	48
Cellular Band	48
Power Control	48
Antenna Circuit	49
Antenna	49

RH-40

CCS Technical Documentation

Abbreviations

ACCH Analog Control Channel

A/D Analog to Digital conversion

AMPS Advanced Mobile Phone System

ANSI American National Standards Institute

ASIC Application Specific Integrated Circuit

AVCH Analog Voice Channel

BB Base Band

CSD Circuit Switched Data

CSP Chipped Scale Package. The same as uBGA.

CTIA Cellular Telecommunications Industry Association

D/A Digital to Analog conversion

DCCH Digital Control Channel

DSP Digital Signal Processing

DTCH Digital Traffic Channel

EDMS Electronic Data Management System

EFR Enhanced Full Rate (codec)

FCC Federal Communications Commission

IR Infrared

IrDA Infrared Data Association

IrMC Infrared Mobile Communications

IrOBEX IrDA Object Exchange Protocol

IS Interim Standard

ISA Intelligent Software Architecture

LCD Liquid Crystal Display

LED Light Emitting Diode

MCU Micro Control Unit / Master Control Unit

MO/MT Mobile Originated/Mobile Terminated (SMS)

OOR Out Of Range (mode)

OTA Over The Air (+ service like Programming etc.)

PC Personal Computer (PC Suite = PC program for phone memory function support)

PWB Printed Wired Board

PWM Pulse Width Modulation

RF Radio Frequency

SAR Specific Absorption Rate

SCF Software Component Factory

SMD Surface Mount Device

SMS Short Message Service

SPR Standard Product Requirement

TDD Text Device for the Deaf

TDMA Time Division Multiple Access. Here: US digital cellular system.

TIA Telecommunications Industry Association

TTY Teletype

UEM Universal Energy Management, a Baseband ASIC.

UPP Universal Phone Processor, a Baseband ASIC.

VCTCXOVoltage Controlled temperature Compensated Crystal Oscillator

WAP Wireless Application Protocol (Browser)

Transceiver RH-40 (2220)

Introduction

NOKIA

The RH-40 is a single band transceiver unit designed for TDMA800 networks. The transceiver consists of the engine module (ST6) and the various assembly parts.

The transceiver has a full graphic display and the user interface is based on a jack style UI with two soft keys. An internal antenna is used in the phone, and there is no connection to an external antenna. The transceiver also has a low leakage tolerant earpiece and an omnidirectional microphone that provides excellent audio quality. I

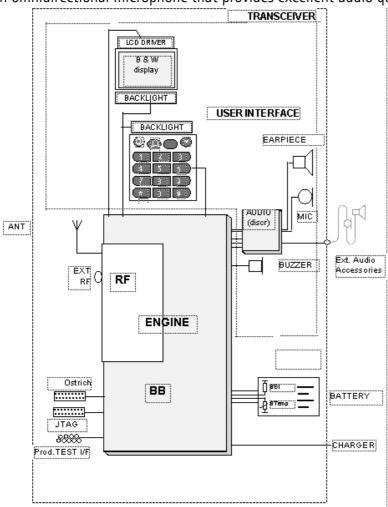


Figure 1: Interconnecting Diagram

Operational Modes

Below is a list of the phone's different operational modes:

- Power Off mode
- 2 Normal Mode (Power controlled by cellular SW, includes various Active and Idle states):
- Analog Modes (800 MHz only):
 - Analog Control Channel, ACCH
 - Analog Voice Channel, AVCH
- Digital Modes (800):
 - Control Channel, DCCH
 - Digital Voice Channel, DTCH (Digital Traffic Channel)
 - Digital Data Channel, DDCH

Both the analog and digital modes have different states controlled by the Cellular SW. Some examples are Idle State (on ACCH), Camping (on DCCH), Scanning, Conversation, NSPS (No Service Power Save, previously OOR = Out of Range).

- Local mode (both Cellular SW and UI SW non active)
- 4 Test mode (Cellular SW active but UI SW non active)

Environmental Specifications

Normal and extreme voltages

Voltage range:

- nominal battery voltage: 3.6 V
- maximum battery voltage: 5.0 V
- minimum battery voltage: 3.1 V

Temperature Conditions

Temperature range:

- ambient temperature: -30...+ 60 xC
- PWB temperature: -30...+85 xC

storage temperature range: -40 to + 85 xC

All of the EIA/TIA-136-270A requirements are not exactly specified over the temperature range. For example, the RX sensitivity requirement is 3dB lower over the -30 - +60 °C range.

Engine Module

Baseband Module

The core part of the transceiver's baseband (see the figure below) consists of two ASICs, the UEM and UPP, and flash memory. The following sections illustrate and explain these parts in detail.

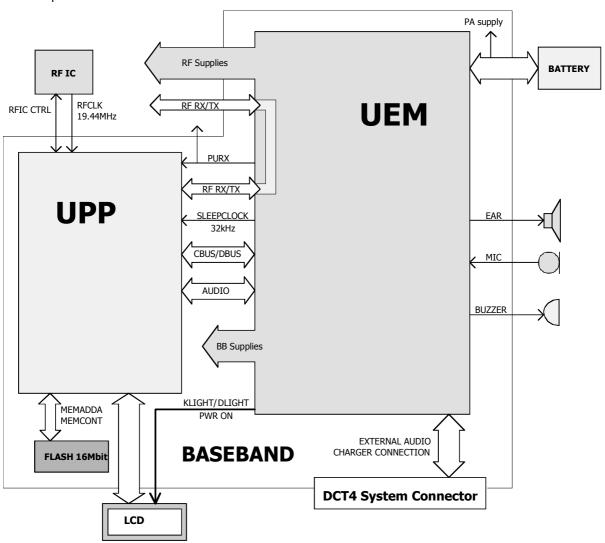


Figure 2: System Block Diagram (simple)

UEM

Introduction to UEM

UEM is the Universal Energy Management IC for digital hand portable phones. In addition to energy management, it performs all the baseband's mixed-signal functions.

Most UEM pins have 2kV ESD protection, and those signals considered to be more easily exposed to ESD, have 8kV protection within the UEM. These kinds of signals are (1) all audio signals, (2) headset signals, (3) BSI, (4) Btemp, (5) Fbus and (6) Mbus signals.

Regulators

NOKIA

The UEM has six regulators for baseband power supplies and seven regulators for RF power supplies. The VR1 regulator has two outputs: (1) VR1a and (2) VR1b. In addition to these, there are two current generators - IPA1 and IPA2 - for biasing purposes.

A bypass capacitor (1uF) is required for each regulator output to ensure stability.

Reference voltages for regulators require external 1uF capacitors. Vref25RF is the reference voltage for the VR2 regulator, Vref25BB is the reference voltage for the VANA, VFLASH1, VFLASH2, VR1 regulators, Vref278 is the reference voltage for the VR3, VR4, VR5, VR6, VR7 regulators, and VrefRF01 is the reference voltage for the VIO, VCORE regulators and for the radio frequency (RF).

ВВ	RF	Current
VANA: 2.78Vtyp 80mAmax	VR1a:4.75V 10mAmax VR1b:4.75V	IPA1: 0-5mA
Vflash1: 2.78Vtyp 70mAmax		IPA2: 0-5mA
Vflash2: 2.78Vtyp 40mAmax	VR2:2.78V 100mAmax	
VIO: 1.8Vtyp 150mAmax	VR4: 2.78V 50mAmax	
Vcore: 1.0–1.8V 200mAmax	VR5: 2.78V 50mAmax	
	VR6: 2.78V 50mAmax	
	VR7: 2.78V 45mAmax	

The **VANA** regulator supplies the baseband's (BB) internal and external analog circuitry. It is disabled in the Sleep mode.

The Vflash1 regulator supplies the LCD, the digital parts of the UEM and Safari asic. It is enabled during startup and goes into the *low lq-mode* when in the *Sleep* mode.

The **VIO** regulator supplies both the external and internal logic circuitries. It is used by the LCD, flash and UPP. The regulator goes into the low lq-mode when in the Sleep mode.

The **VCORE** regulator supplies the DSP and the core part of the UPP. The voltage is programmable and the startup default is 1.5V. The regulator goes into the low lg-mode when in the *Sleep* mode.

The VR1 regulator uses two LDOs (VR1A and VR1B) and a charge pump. The charge pump requires one external 1uF capacitor in the Vpump pin and a 220nF flying capacitor between the CCP and CCN pins. In practice, the 220nF flying capacitor is formed by 2 x 100nF capacitors that are parallel to each other. The VR1A regulator is used by the Safari RF ASIC. VR1B is not used in the RH-40.

System Module

CCS Technical Documentation

The VR2 regulator is used to supply the (1) external RF parts, (2) lower band up converter, (3) TX power detector module and (4) Safari. In light load situations, the VR2 regulator can be set to the low lg-mode.

The **VR3** regulator supplies the VCTCXO and Safari in the RF. It is always enabled when the UEM is active. When the UEM is in the Sleep mode, the VR3 is disabled.

The **VR4** regulator supplies the RX frontends (LNA and RX mixers).

The **VR5** regulator supplies the lower band PA. In light load situations, the VR5 regulator can be set to the low lq-mode.

The VR6 regulator supplies the higher band PA and TX amplifier. In light load situations, the VR6 regulator can be set to the *low lg-mode*. Not used in the RH-40.

The **VR7** regulator supplies the RF synths. In light load situations, the VR7 regulator can be set to the *low lq-mode*.

The **IPA1** and **IPA2** are programmable current generators. A $27\Omega/1\%/100$ ppm external resistor is used to improve the accuracy of the output current. The IPA1 is used by the lower PA band and IPA2 is used by the higher PA band.

RF Interface

The interface between the baseband and the RF section is also handled by the UEM. It provides A/D and D/A conversion of the in-phase and quadrature receive and transmit signal paths. It also provides A/D and D/A conversions of received and transmitted audio signals to and from the UI section. The UEM supplies the analog AFC signal to the RF section, according to the UPP DSP digital control.

Charging Control

The CHACON block of the UEM asics controls charging. The needed functions for the charging controls are the (1) pwm-controlled battery charging switch, (2) charger-monitoring circuitry, (3) battery voltage monitoring circuitry and (4) RTC supply circuitry for backup battery charging (Not used in NKC-1X). In addition to these, external components are needed for EMC protection of the charger input to the baseband module.

Digital Interface

Data transmission between the UEM and the UPP is implemented using two serial connections, DBUS (programmable clock) for DSP and CBUS (1.0MHz GSM and 1.08MHz TDMA) for MCU. The UEM is a dual voltage circuit: the digital parts are run from 1.8V and the analog parts are run from 2.78V. The Vbat (3,6V) voltage regulator's input is also used.

Audio Codec

The baseband supports two external microphone input areas and one external earphone output. The input can be taken from an internal microphone, a headset microphone or from an external microphone signal source through a headset connector. The output for the internal earpiece is a dual-ended type output, and the differential output is capable

of driving 4Vpp to the earpiece with a 60 dB minimum signal as the total distortion ratio. The input and output signal source selection and gain control is performed inside the UEM Asic, according to the control messages from the UPP.

UI Drivers

NOKIA

There is a single output driver for the buzzer, display and keyboard LEDs inside the UEM. These generate PWM square wave for the various devices.

AD Converters

The UEM is equipped with a 11-channel analog to digital converter. Some AD converter channels (LS, KEYB1-2) are not used in RH-40. The AD converters are calibrated in the production line.

UPP

Introduction

RH-40 uses the UPPv4M ASIC. The RAM size is 4M. The processor architecture consists of both the DSP and the MCU processors.

Blocks

The UPP is internally partitioned into two main parts: (1) the Brain and (2) the Body.

The Processor and Memory System (that is, the Processor cores, Mega-cells, internal memories, peripherals and external memory interface) is known as the Brain.

> The Brain consists of the following: (1) the DSP Subsystem (DSPSS), (2) the MCU Subsystem (MCUSS), (3) the emulation control EMUCtl, (4) the program/data RAM PDRAM and (5) the Brain Peripherals-subsystem (BrainPer).

The NMP custom cellular logic functions are known as the Body.

The Body contains interfaces and functions needed for interfacing other baseband and RF parts. The body consists of, for example, the following subblocks: (1) MFI, (2) SCU, (3) CTSI, (4) RxModem, (5) AccIF, (6) UIF, (7) Coder, (8) BodylF, (9) PUP.

Flash Memory

Introduction

The RH-40 transceiver uses a 16-Mbit flash as its external memory. The VIO regulator is used as a power supply for normal in-system operation. An accelerated program/erase operation can be obtained by supplying Vpp of 12 volt to the flash device.

The device has two read modes: asynchronous and burst. The Burst read mode is utilized in RH-40, except for the start-up, when the asynchronous read mode is used for a short time.

System Module

User Interface Hardware

LCD

Introduction

RH-40 uses a black & white GD46 84x48 full dot matrix graphical display. The LCD module includes the LCD glass, the LCD COG-driver, an elastomer connector and a metal frame. The LCD module is included in the lightguide assembly module.

Interface

The LCD is controlled by the UI SW and the control signals are from the UPP asic. The VIO and Vflash1 regulators supply the LCD with power.

The LCD has an internal voltage booster and a booster capacitor is required between Vout and GND.

Pin 3 (Vss9) is the LCD driver's ground and Pin 9 (GND) is used to ground the metal frame.

Keyboard

Introduction

The RH-40 keyboard style follows the Nokia Jack style, without side keys for volume control. The PWR key is located at the top of the phone.

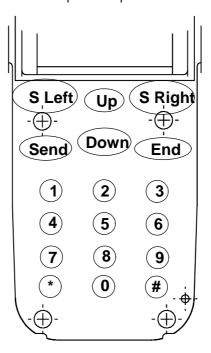


Figure 3: Pacement of keys

Power Key

NOKIZ

All signals for the keyboard come from the UPP asic, except PWRONX line for the power key signal which is connected directly to the UEM. The pressing of the PWR key grounds the PWRONX line and the UEM generates an interrupt to UOO, which is then recognized as a PWR key press.

Keys

Other keys are detected so that when a key is pressed down, the metal dome connects one S-line and one R-line of the UPP together and creates an interrupt for the SW. This kind of detection is also known as *metaldome detection*. The matrix of how lines are connected and which lines are used for different keys is described in the following table. The S-line SO and R-line R5 are not used at all.

Returns / Scans	SO	S1	S2	S3	S4
RO	NC	NC	Send	End	NC
R1	NC	Soft left	Up	Down	Soft right
R2	NC	1	4	7	*
R3	NC	2	5	8	0
R4	NC	3	6	9	#
R5	NC	NC	NC	NC	NC

where NC = Not Connected

Lights

Introduction

RH-40 has 10 LEDs for lighting purposes. Six of them are for the keyboard and four for the display. The LED type is blue-light emitting and SMD through hole mounted.

Interfaces

The display lights are controlled by a Dlight signal from the UEM. The Dlight output is the PWM signal, which is used to control the average current going through the LEDs. When the battery voltage changes, the new PWM value is written onto the PWM register. In this way, the brightness of the lights remains the same with all battery voltages within range. The frequency of the signal is fixed at 128Hz.

The keyboard lights are controlled by the Klight signal from the UEM. The Klight output is also a PWM signal and is used in the same way as Dlight.

Technical Information

Each LED requires a hole in the PWB, in which the body of the LED locates in hole and terminals are soldered on the component side of the module PWB. The LEDs have a white plastic body around the diode, and this directs the emitted light better to the UI-side.

The current for the LCD and keyboard lights is limited by the resistor between the Vbatt and LEDs.

Audio HW

Earpiece

Introduction

The speaker is a dynamic one. It is very sensitive and capable of producing relatively high sound pressure also at low frequencies. The speaker capsule and the mechanics around it together make the earpiece.

Microphone

Introduction

The microphone is an electret microphone with an omnidirectional polar pattern. It consists of an electrically polarized membrane and a metal electrode which form a capacitor. Air pressure changes (for example, sound) moves the membrane, which causes voltage changes across the capacitor. Because the capacitance is typically 2 pF, a FET buffer is needed inside the microphone capsule for the signal generated by the capacitor. Because of the FET, the microphone needs a bias voltage.

Buzzer

Introduction

The operating principle of the buzzer is magnetic. The diaphragm of the buzzer is made of magnetic material and it is located in a magnetic field created by a permanent magnet. The winding is not attached to the diaphragm, as is the case with the speaker. The winding is located in the magnetic circuit so that it can alter the magnetic field of the permanent magnet, thus changing the magnetic force affecting the diaphragm. The buzzer's useful frequency range is approximately from 2 kHz to 5kHz.

Battery

Phone Battery

Introduction

The BMC-3 battery (Ni-MH 900mAh) is used. It is also possible to use the BLC-2 (Li-ion 950mA) battery.

Interface

The battery block contains NTC and BSI resistors for temperature measurement and battery identification. The BSI fixed resistor value indicates the chemistry and default capacity of a battery. The NTC-resistor measures the battery temperature. Temperature and capacity information is needed for charge control. These resistors are connected to BSI and BTEMP pins of the battery connector. The phone has pull-up resistors for these

lines so that they can be read by A/D inputs in the phone (see the figure below). Serial resistors in the BSI and BTEMP lines are for ESD protection. Both lines also have spark caps to prevent ESD. There is also a varistor in the BTEMP line for ESD protection.

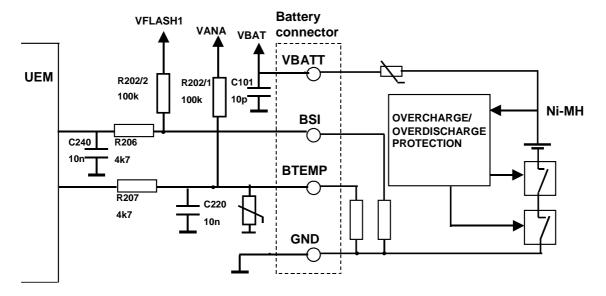


Figure 4: Battery Connection Diagram

The batteries have a specific red line, which indicates if the battery has been subjected to excess humidity (red line spreads). The batteries are delivered in the protection mode, which gives longer storage time. The voltage seen in the outer terminals is zero (or floating), and the battery is activated by connecting the charger. The battery has internal protection for overvoltage and overcurrent.

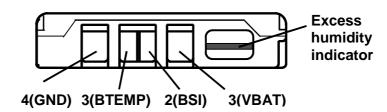


Figure 5: BMC-3 Battery contacts (BLC-2 has the same interface)

Battery Connector

RH-40 uses the spring-type battery connector. This makes the phone easier to assemble in production and the connection between the battery and the PWB is more reliable.

Page 19

#	Signal name	Connected from - to		Batt. I/ O	Signal properti A/Dlevelsfi		Description / Notes
1	VBAT	(+) (batt.)	VBAT	1/0	Vbat	3.0-5.1V	Battery voltage
2	BSI	BSI (batt.)	UEM	Out	Ana		Battery size indicator
3	ВТЕМР	BTEMP (batt.)	UEM	Out	Ana	40mA/Switch 400mA	Battery temper- ature indicator
4	GND	GND	GND	GND	GND		Ground

Accessories Interface

System connector

Introduction

RH-40 uses accessories via a system connector.

Interface

The interface is supported by fully differential 4-wire (XMICN, XMICP, XEARN, and XEARP) accessories. RH-40 supports the HDE-2 inbox headset, HDB-5 Boom Headset, HDC-5 headset, LPS-3 loopset, and the PPH-1 car kit.

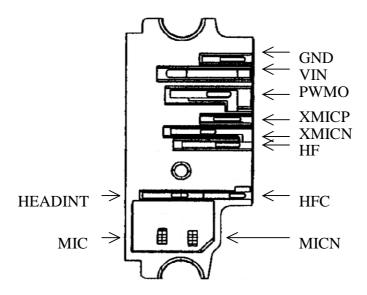


Figure 6: System Connector

An accessory is detected by the HeadInt- line, which is connected to the XEARP inside the system connector. When an accessory is connected, it disconnects XEARP from HEADINT, and the UEM detects it and generates an interrupt (UEMINT) to the MCU. After that, the HOOKINT line is used to determine which accessory is connected. This is done by the voltage divider, which consists of the phone's internal pull-up and accessory-spe-

cific pull-down. The voltage generated by this divider is then read by the ad- converter of UEM. The HOOKINT- interrupt is generated by the button in the headset or by the accessory external audio input.

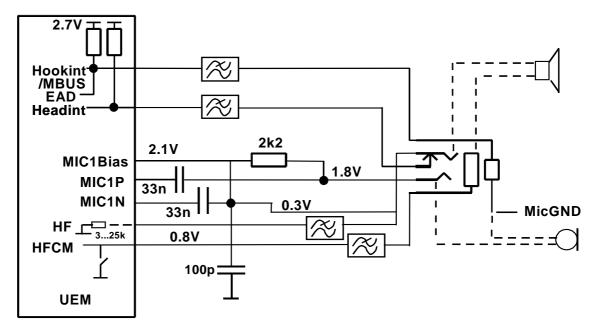


Figure 7: Accessory Detection / External Audio

Technical Information

ESD protection is made up by (1) spark caps, (2) a buried capacitor (Z152 and Z154–157), and (3) $\pm 8kV$ inside the UEM. The RF and BB noises are prevented by inductors.

PPH-1 Handsfree

Introduction

The PPH-1 handsfree device

- provides the charging and handsfree functionality,
- has a built-in speaker, and
- uses a phone microphone, but also has a connector for the HFM-8 optional external microphone (using HFM-8 mutes phone microphone)

Interface

A 4-wire interface is implemented with 2.5mm diameter round plug/jack which is otherwise like a so-called standard stereo plug, but the innermost contact is split into two.

System Module

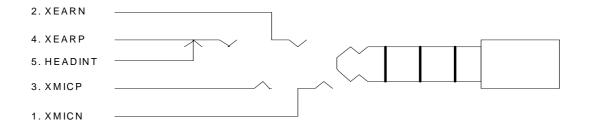


Figure 8: 4-wire, fully differential headset connector pin layout

Charger IF

Introduction

The charger connection is implemented through the system connector. The system connector supports charging with both plug chargers and desktop stand chargers.

There are three signals for charging. The charger GND pin is used for both desktop and plug chargers as well as for charger voltage. The PWM control line, which is needed for 3-wire chargers, is connected directly to the GND in the PWB module, so the RH-40 engine does not provide any PWM control for chargers. Charging controlling is done inside the UEM by switching the UEM's internal charger switch on and off.

Interface

The fuse F100 protects the phone from too high currents, for example, when broken or pirate chargers are used. L100 protects the engine from RF noises, which may occur in the charging cable. V100 protects the UEM ASIC from reverse polarity charging voltage and from too high charging voltages. C106 is also used for ESD and EMC protection. Spark gaps right after the charger plug are used for ESD protection.

Test Interfaces

Production Test Pattern

The interface for RH-40 production testing is a 5-pin pad layout in the BB area (see the figure below). The production tester connects to these pads by using spring connectors. The interface includes the MBUS, FBUSRX, FBUSTX, VPP and GND signals. The pad size is 1.7mm. The same pads are used also for AS test equipment, such as the module jig and the service cable.

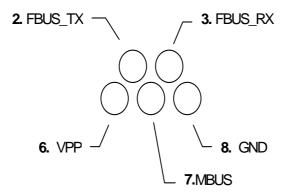


Figure 9: Top View of Production Test Pattern

Other Test Points

As BB asics and flash memory are CSP components, the visibility of BB signals is very poor. This makes the measuring of most of the BB signals impossible. In order to debug the BB, at least to some level, the most important signals can be accessed from the 0.6mm test points. The figure below shows the test points located between the UEM and the UPP. There is an opening in the baseband shield to provide access to these pads.

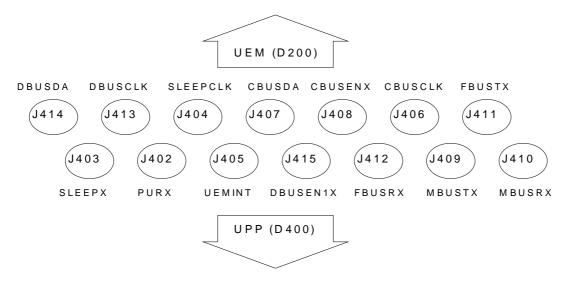


Figure 10: Test points located Between UEM and UPP

FMC

General

The EMC/ESD performance of RH-40's baseband is improved by using a shield to cover the main components of the BB, such as the UEM, UPP and Flash. The UEM has internal protection against a $\pm 8kV$ ESD pulse in most sensitive pins and $\pm 2kV$ in other pins. The BB-shield is soldered to the PWB and it also increases the rigidity of the PWB in the BB area, thus improving the phone's reliability. The shield also improves the thermal dissipation by spreading the heat more widely.

The BB and RF shield are connected together on the PWB and the protective metal deck underneath the battery is grounded to RF shield.

BB Component and Control IO Line Protection

Keyboard lines

ESD protection for keyboard signals is implemented by using separate EMI filter component located between keyboard and UPP. EMI component is a low-pass filter with ±15kV ESD protection. Also the distance from A-cover to PWB is made longer with the spikes in the keymat together with C-cover metallization is protecting keyboard lines.

C-Cover

The C-cover on the UI-side is metallized on the inner surface (partly) and is grounded. All areas in which the plated C-cover touches the PWB surface are grounded and the solder masks are opened.

PWB

All edges are grounded on both sides of the PWB and the solder mask is opened in these areas. The aim is that any ESD pulse faces the ground area first when entering the phone, for example, between the mechanics covers.

LCD

ESD protection for LCD is implemented by connecting the metal frame of the LCD into ground. The connection is only on one side, at the top of the LCD, which is not the best solution. The software takes care of the LCD's crashing in case of an ESD pulse.

Microphone

The microphone's metal cover is connected to the GND and there are spark gaps on the PWB. The microphone is an asymmetrical circuit, which makes it well protected against EMC.

EARP

The EARP is protected with C-cover metallization and with a plastic-fronted earpiece.

Buzzer

PWB openings with the C-cover metallization protect the buzzer from ESD.

CCS Technical Documentation

System Connector Lines

NOKIA

	System C	Connector sign	als that have	EMC protec	ction		
Protection type	VIN	XMIXP	XMICN	XEARP	XEARN	HEADINT	MICP
ferrite bead (600 /199MHz)		Х	Х	Х	Х		Х
ferrite bead (420 /100MHz)	Х						
spark gaps		Х	Х	Х	Х	Х	Х
PWB capacitors		Х	Х	Х	Х	Х	Х
RC-circuit			Х	Х	Х	Х	Х
capacitor to ground	Х	Х	Х	Х	Х		

Battery Connector Lines

BSI and BTEMP lines are protected by spark gaps and the RC-circuit (4k7 & 10n), in which the resistors are size 0603.

MBUS and FBUS

The opening in the protective metal deck, underneath the battery, is so small that ESD does not get into the MBUS and FBUS lines in the production test pattern.

Transceiver Interfaces

The tables in the following sections illustrate the signals between the various transceiver blocks.

BB - RF Interface Connections

The BB and RF parts are connected together without a physical connector.

All the signal descriptions and properties in the following tables are valid only for active signals, and the signals are not necessarily present all the time.

Note: In the following tables, the nominal signal level of 2.78V is sometimes referred to as 2.7V.

Rip #	Signal Name DAMPS, GSM1900	Conn from			BB Signal Properties I/O A/DLevelsFreq./ Timing resolution			Description / Notes
RFIC	CNTRL(2:0)			RFI	C Con	trol Bus froi	n UPP to RF IC	C(TACO&SAFARI)
0	RFBUSCLK	UPP	RFIC	In	Dig	0/1.8V	9.72 MHz	RF Control serial bus bit clock
1	RFBUSDA	UPP/RFIC	RFIC UPP	1/0	Dig	(0: <0.4V 1: >1.4 V)		Bi-directional RF Control serial bus data,
2	RFBUSEN1X	UPP	RFIC	In	Dig			RFIC Chip Sel X
PUSL(2:0)			Pov	ver Up	Reset from	UEM to RF IC(TACO&SAFARI)	
0	PURX	UBM	RFIC	Out	Dig	0/1.8V	10us	Power Up Reset for RF IC
								SLCLK & SLEEPX not used in RF
GENIO(28:0)							ected to RF, se om UPP GENIC	e also separate collective GENIO(28:0) Os to RF
5	TXP1	RFIC	UPP	Out	Dig	0/1.8V	10 us	SAFARI: Low Band Tx enabled
								TACO: Low Band&High Band enabled
6	TXP2	RFIC	UPP	Out	Dig	0/1.8V		High Band Tx enabled Only in SAFARI engine.
11	BANDSEL	RFIC	UPP	Out	Dig	0/1.8V		Rx Band select. Option for module LNA.
								Only in SAFARI engine.

Issue 1 03/2003

Rip #	Signal Name DAMPS, GSM1900	fron	Connected from to		BB O	Signal Properties A/DLevelsFreq./ Timing resolution		Description / Notes
RFCLK (not BUS -> no rip #)					em C uency	lock From RF shifted, WAN	To BB, origin M only) in RF	nal source VCTCXO, buffered (and IC (TACO&SAFARI)
	RFCLK	VCTCX0 - > RFIC	UPP	In	Ana	800mVpp typ (FET probed) Bias DC blocked at UPP input	19.44 MHz	System Clk from RF to BB,
	RFCIk GND	RF	UPP	In	Ana	0		System Clock slicer Ref GND, not separated from pwb GND layer
SLOWAD(6:0)				Slow	Spe	ed ADC Lines	from RF bloc	:k
5	PDMID	RF Power detection module	UEM	In	Ana	0/2.7V dig	0/VR2	Power detection module identification to slow ADC (ch 5, previous VCTCXO Temp) signal to UEM.
6	PATEMP	RF Power detection module	UEM	In	Ana	0.1-2.7V	-	Tx PA Temperature signal to UEM, NTC in Power Detection Module
RFCC	ONV(9:0)			RF- E	_	fferential Ana	log Signals: 1	[x I&Q, Rx I&Q and reference voltage
1	RXIP	RFIC	UEM	In	Ana	1.4Vpp max. diff. 0.5Vpp typ		Differential positive/negative in-phase Rx Signal
2	RXQP					bias		Diff. Positive/negative quadrature phase Rx
3	RXQN					1.30V		Signal
4	TXIP	UEM	RFIC	Out	Ana	2.2Vpp		Differential positive/negative in-phase Tx
5	TXIN					max. diff. 0.6VppTyp		Signal
6	TXQP					Bias 1.30V		Differential positive/negative quadrature
7	TXQN			_		1.307		phase Tx Signal
9	VREFRF01	UEM	RFIC	Out	Vref	1.35 V		RF IC Reference voltage from UEM

Rip #	Signal Name DAMPS, GSM1900	Connected from to			3B /O	A/DLev	Properties /elsFreq./ resolution	Description / Notes
RF	AUXCONV(2:	0)	RF_	RF_BB Analog Control Signals to/fro			om UEM	
1	TXPWRDET	TXP Det.	UBM	ln	Ana	0.1-2.4 V	50 us	Tx PWR Detector Signal to UEM
2	AFC	UBM	∨CTCX0	Out	Ana	0.1-2.4 V		Automatic Frequency Control for VCTCXO

V R	F Globals ins	tead of B	us					UEM to RF. Current values are of the asured values of RF
	VR1 A	UEM	RFIC	Out	Vreg	4.75 V +- 3 %	10 mA max.	UEM, charge pump + linear regulator output. Supply for UHF synth phase det
	VR1 B	UEM	RFIC	Out	Vteg	4.75 V +- 3 %	10 mA max.	UEM, charge pump + linear regulator output. Only in SAFARI engine, not used in TACO engine.
	VR2	UEM	RFDiscr./ RFIC	Out	Vreg	2.78 V +- 3 %	100 mA max.	UEM linear regulator. Supply voltage for Tx IQ filter and IQ to Tx IF mixer.
	VR3	UEM	VCTCXO	Out	Vreg	2.78 V +- 3 %	20 mA max.	UEM linear regulator. Supply for VCTCXO + RFCLK Buffer in RF IC.
	VR4	UEM	RFIC	Out	Vreg	"	50 mA max.	UEM linear regulator. Power Supply for LNA / RFIC Rx chain.
	VR5	UEM	RFIC	Out	Vreg	"	50 mA max.	UEM linear regulator. Power Supply for RF low band PA driver section.
	VR6	UEM	RFIC	Out	Vreg	"	50 mA max.	UEM linear regulator. Power supply for RF high band PA driver section. Only in SAFARI engine, not used in TACO engine.
	VR7	UEM	RFIC, UHF VCO	Out	Vreg	"	45mA	UEM linear regulator. Power supply for RF Synths
	IPA1	UEM	RF PA	Out	lout	0-5 mA		Settable Bias current for RF PA L-Band
	IPA2	UEM	RFPA	Out	lout	0-5 mA		Settable Bias current for RF PA H-band
	VFLASH1	UEM	RFIC	Out	lout	2.78V	~2mA	UEM linear regulator common for BB. RFIC digital parts and RF to BB digi IF.
VΒ	ATT, Globa	ı						
	VBATTRF	Batt	RFPA	Out	Vbatt	35V	01A	Raw Vbatt for RF PA
		Conn				nom 3.6V	2A peak	

BB Internal Connections

#	Signal Name DAMPS/G SM1900		nected n to	-	EM О	A/DL	l Properties evelsFreq./ g_resolution	Description / Notes			
RFCONVDA(5:0)*					1.8V digital interface, between UPP and UEM. RF Converter CLK, Rx and Ty I&Q data (bit stream signals).						
0	RFCONVCLK	UPP	UEM	ln	Dig	0/1.8 ∨	4.86 MHz/ Qigi 3.24 MHz /Ana	RF Converter Clock			
1	RXID	UEM	UPP	Out]			(PDM) RXI Data			
2	RXQD]						(PDM) RXQ Data			
3	TXID	UPP	UEM	In	1			(PDM) Ţ <u>x</u> ĻData			
4	TXQD]						(PDM) TxQ Data			
5	AUXDA	UPP	UEM	In	1			Auxiliary DAC Data			
RECO	ONVCTRL(2:	:0)*					between UPP I Control Bus,	(DSP) and UEM, RF Converter and UEM RI "DBUS",			
0	DBUSCLK	UPP	UEM	li	Dig	0/1.8 V	9.72MHz	Clock for Fast Control to UEM			
	DDLIOD 4	I		INQU				Fast Control Data to/from UEM			
1	DBUSDA	1	1								

Rip #	Signal Name DAMPS, GSM1900	from	ected to		EM O	A/DLev	Properties /elsFreq./ resolution	Description / Notes			
PUSI	_(2:0)*			Pow	Power-Up & Sleep Control lines						
0	PURX	UEM	UPP RFIC	Out	Dig	0/1.8 V		Power Up Reset, 0 at reset			
1	SLEEPX	UPP	UEM	In				Power Save Functions, active low			
2	SLEEPCLK	UEM	UPP	Out			32.768 kHz	32 kHz Sleep Clock			
IACC	IAC CDIF(5:0)*			BB II		al 1.8V Digita	al Accessory B	uses between UPP and 2.7V level shifter			
0	IRTX	UPP	UEM	Out	Dig	0/1.8 V	1.152 Mbit/s max	Infrared Transmit Note: no IR in NKC- 1/NKC-1G.			
1	IRRX	UEM	UPP	In				Infrared Receive			
2	MBUSTX	UPP	UEM	In	Dig	0/1.8 V	9k6 b/s	MBUS Transmit			
3	MBUSRX	UEM	UEM	UEM	UEM	UPP	Out			9k6 b/s	MBUS Receive / FDL Clk
							<7Mb/s				
4	FBUSTXI	UPP	UEM	In	Dig	0/1.8 V	<115kb/s	FBUS Transmit / FDL Tx			
							<1Mb/s				
5	FBUSRXI	UEM	UPP	Out			<115kb/s	FBUS Receive I FDL Rx			
							<7Mb/s				

SLO	SLOWAD(6:0)*					ed ADC Lines	UEM external	
0	BSI	BATTE	UEM	In	Ana	0 -2.7V	Battery Size Indicator/FDL init	
1	BTEMP	RY					Battery Temperature	
5	PDMid	RF PDMod	UEM	In	Ana	0 -2.7V	Power detection module identific slow ADC (ch 5, previous VCTC signal to UEM.	
6	PATEMP	RF; PDMod NTC					Tx PA Temperature, Measured f Detection Module	rom Power
RFC	RFCONV(9:0)*			RF- E	3B Aı	nalog Signals:	Tx I&Q, Rx I&Q and ref (TACO&SAFARI)	
0	RXIP	RFIC	UEM	In	Ana	1.4Vpp	Differential positive/negative in-p	hase Rx
1	RXIN					max. diff. 0.5Vpp typ	Signal	
2	RXQP					bias	Diff. Positive/negative quadrature	e phase Rx
3	RXQN	1				1.30V	Signal	
4	TXIP	UEM	RFIC	Out	Ana	2.2Vpp	Differential positive/negative in-p	hase Tx
5	TXIN]				max. diff. 0.6VppTyp	Signal	
6	TXQP					Bias	Differential positive/negative qua	drature
7	TXΩN					1.30V	phase Tx Signal	
9	VREFRF01	UEM	RFIC	Out	Vhef	1.35 V	RF IC Reference voltage from U	EM

Rip #	# DAMPS/G SM1900			UE I/		Signal Properties A/DLevelsFreq./ Timing resolution		Description / Notes				
REAL	UXCONV(2:0)	RF-BB auxiliary analog Signals									
0												
1	TXPWRDET	TXRow, Det Mod.	VEM	h	Ala	0.1-2.7V		Tx PWR Detector Output to UEM				
2	AFC	VEM	vстсхо	Out	Ata	0.1-2.4V	11bits	AFC control voltage to VCTCXO, default about 1.3V				
IDIE	na hun na ri	inn	HEM 2.7	V oi a	aala te	ID Madula	Notes on ID in	HIVO 4V				
ікіг,	no bus no ri	i 		o sagi			Note: no IR in					
	IRLEDC	UEM	IR		Dig	0/2.7V	9k6 -1 M bit/s	IR Tx_signal to IR Module				
	IRRXN	IR	UEM	h	Dig	0/2.7V	9k6 -1 M bit/s	IR Receiver signal from IR Module				
UIDRV lines, no bus			HEM dri	uers: :	sinkin	a outnuts to	Buzzer, Vibra	a, keyboard LEDs, display LEDs				
	BUZZO	UEM	Buzzer	Out	Dig	350mA	1-5 kHz, PVVM_vol	Open collector sink switch output for Buzzer. Frequency controlled for pitch, PWM for volume				
	VIBRA	UEM	Yibra	Out	Dlg		64/128/256/ 512 Hz	Open_collector.sink switch/Frequency/pwm output for buzzer Note: no yilgra in NKC-1X.				
	DLIGHT	UEM	UI	Out	Dlg	100mA / Vbatt	Switch/ 100Hz gwm	Open drain switch/gwm_output for display light				
	KLIGHT	UEM	UI	Out	Dig	100mA / Ybatt	Switch/ 100Hz gwm	Open drain switch/gwm_output for keylight				
ACC	DIF lines, no	bus*	Wired D	igital .	Acces	sory Interfa	ce, test patteri	n in NKC-1X				
	MBUS	UEM	Test Pad 7	h.O t	Dig	0/2.7∀	9k6bit/s	Mbus bidirectional asynchronous serial data bus/FDL clock, 0-8MHz depends on project				
	FBUSTXO	UEM	Test Pad 2	Out	Dlg	0/2.7V	9k6-115kbit/s	Fbus asynchronous serial data output /FDL data out <1Mbit/s				
	FBUSRXO	Test Pad 3	UEM	h	Dig	0/2.7V	9k6-115kbit/s	Ebus asynchronous serial data input/FDL in, 0-8Mb/s depends on project				
RTC	BATT lines,	no bus *	Connect 1X	tor pa	ds for	Real Time (battery Note: no back-up battery in NKC-					
	VBACK	UEM	RTCBATT	In/	WS.ND.	+2-3.3V		For back up battery Li 6.8x1.4				
	GND	Global G	ND	Out	gly Clug	0		2.3mAh@3.3V				

Issue 1 03/2003 ©Nokia Corporation Confidential Page 31

Rip #	Signal Name DAMPS/ GSM1900		ected to	A/DLevel:		Properties /elsFreq./ resolution	Description / Notes	
ΗР	INTERNAL	ALIDIO						
	0(4:0)	- 40010	1	nal ar	alon (par & micro	nhono IF hotis	een UEM and Mic/Ear circuitry
0	EARP	TUEM	Earpiece	Out	Ana	1.25V	Audio	Differential signal to HP internal Earpiece.
1	EARN	1 0	Earpiece			1.234	Addio	Load resistance 32 ohm.
2	MIC1N	Mic	UEM	In	Ana	100mVpp	Audio	Differential signal from HP internal MIC.
3	MIC1P	1 """	OLM			max diff.	/Addio	2mV nominal
4	MICB1	Mic	UEM	Out	V bias	2.1V typ./ <600 uA	DC Bias	Bias voltage for internal MIC
EXT	ERNAL A	UDIO IN	TERFAC	CE				
XAUI	010(9:0)*		External	Audio	o IF be	etween UEI	M and X-audio	circuitry
0	HEADINT	SysCon/HS et	UEM	ln	Dig	0/2.7V		Input for Headset Connector HeadInt Switch
1	HF	UEM	SysCon/H Set	Out	Ana	1.0Vpp bias 0.8V	Audio	External Earpiece Audio Signal
2	HFCM				Ana	0.8 Vdc		Reference output for DC coupled external Earpiece
3	MICB2	UEM	SysCon / Headse t	Out	V bias	2.1V typ/ 600 uA		Bias voltage for external MIC
4	MIC2P	SysCon/	UEM	In	Ana	200mVpp	Audio	Differential signal from external MIC
5	MIC2N	Headset				max diff		
6	HOOKINT	Sys Con	UEM	ln	Ana/ Digi	02.7V	DC	HS Button interrupt, External Audio Accessory Detect (EAD)
CHA	ARGER in	terface						
CHA	RGER lines,	no bus *						
	VCHARIN	Charger	UEM	In	Vehr	< 16V < 1.2A	DC	Vch from Charger Connector, max.20V
	GND				GND			GND from/to Charger connector
PWR	ONX *	1			nal, se		Ul/keyboard	
	PWRONX	UI	UEM	in	Dig	0/Vbatt		Power button
	GND				GND			GND for Power button

Rip #	Signal Name DAMPS/	Conne from -		-	UEM Signal Properties A/DLevelsFreq./ I/O Timing resolution		velsFreq./	Description / Notes	
	GSM190 0								
VBB,	VBB, Globals instead of Bus *				ulated	BB Supply	/ Voltages		
	VANA	UEM		Oit	Væg.	2.78 V +- 3 %	80mA max.	Disabled in sleep mode.	
	VFLASH1	UEM		Oit	Vieg.	2.78 V +- 3 %	70mA max.	1.5mA max. in sleep mode. VFLASH1 is always enabled after power on.	
	VFLASH2	UEM		Oit	Væg.	2.78 V +- 3 %	40mA max.	VFLASH2 is disabled by default.	
	VIO	UEM		Out	Væg.	1.8 V +- 4.5 %	150mA max.	1.5mA max. in sleep mode. VIO is always enabled after power on.	
	VCORE	UEM		Out	Væg.	1.0-1.8 V +- 5 %	200mA max.	200 uA max. in sleep mode.	
	VSIM	UEM	SIM	Oit	Væg.	1.80/3.0V	25 <u>ო</u> ტ max.	500 uA max. in sleep mode Not used in NKC-1X.	
	VBACK	UEM		h/O t	Væg.	3.0 V		No external use, only for RTC battery charging/discharging	
								Not used in NKC-1X.	

UPP Block Signals

RFCONVDA(5:0)	See UEM / RFC ONVD A(5:0)
RFCONVCTRL(2:0)	See UEM / RFCONVCONTR(2:0)
AUDUEMCTRL(3:0)	See UEM / AUDUEMCTRL(3:0)
AUDIODATA(1:0)	See UEM / AUDIODATA(1:0)
ISIMIF(2:0)	See UEM / ISIMIF(2:0)
PUSL(2:0)	See UEM / PUSL(2:0)
IACCDIF(5:0)	See UEM / IACCDIF(5:0)

RFCLK & GND	See BB_RF IF Conn / RFCLK (not BUS)
RFICCNTRL(2:0)	See BB_RF IF Conn / RFICCNTRL(2:0)
GENIO(28:0)/rips 5 and 6	See BB_RF IF Conn / GENIO(28:0) also Sec 5.2.4

Rip #	Signal Name DAMPS/ GSM1900	Connected from to		UPP Signal Properties A/DLevelsFreq./ Timing resolution		lsFreq./	Description / Notes	
UPP	UPP Globals, no bus, no rip			Pow	er sup	plies and GN	ID	
	VIO	UPP	UEM	In	Vreg	1.8 V +- 4.5 %	20mA max.	UPP I/O power supply
	VCORE	UPP	UEM	In	Vreg	1.0-1.8 V +- 5 %	100mA max.	UPP logics and processors power supply, settable to reach the speed for various clock frequencies.
	GND	UPP	VSSXXX			0		Global GND

Page 35

Rip #	Signal Name DAMPS/ GSM1900	me from to			I/O P		Properties elsFreq./ resolution	Description / Notes
MEM	ADDA(23:0) *	External Mem	ory Ada	tress	/Data Bus		
0- 15	EXTAdDa 0:15	UPP	Memory	In/Ou t	Dig	0-1.8 V	25 / 150 ns	Burst Flash Address (0:15) & Data (0:15) Direct Mode Address (0:7)
16- 23	EXTAd 16:23	UPP	Memory	Out	Dig	0-1.8 ∨	25 / 150 ns	Burst Flash Address (16:23) Direct Mode Data (8:15)
MEM	CONT(9:0)	*	External Mem	ory Cor	ntrol E	Bus		
0	Ext/WrX	UPP	Memory	Out	Dig	0-1.8 V		Write Strobe
1	ExtRdX	UPP	Memory	Out	Dig	0-1.8 V		Read Strobe
2	FIs2CSX	UPP	Memory	Out	Dig	0-1.8 V		2nd Flash Chip Select, not used in NKC- 1/NKC-1G
3	FISBAAX	UPP	Memory	Out	Dig	0-1.8 V		Flash Burst Address Advance Direct Mode Address (16)
4	FIsPS	UPP	Memory	In/Ou t	Dig	0-1.8 V	25 ns	Burst Mode Flash Data Invert Direct Mode Address (17)
5	FIsAWDX	UPP	Memory	Out	Dig	0-1.8 V		Flash Addr Data Valid/ Latch Burst Addr Direct Mode Address (18)
6	FisClk	UPP	Memory	Out	Dig	0-1.8 V	50 MHz	Burst Mode Flash Clock Direct Mode Address (19)
7	FIsCSX	UPP	Memory	Out	Dig	0-1.8 V		Flash Chip Select
8	FIsRDY	UPP	Memory	In	Dig	0-1.8 V		Ready Signal for Flash
9	FIsRSTX	UPP	Memory	In	Dig	0-1.8 V		Reset Signal for Flash
GEN	IO(28:0)		Memory Write	Protec	t fron	n GENIO bus	;	
23	GENI0(23)	UPP	Memory	Out	Dig	0-1.8 V		Write Protect, 0-active

Rip #	Signal Name DAMPS, GSM1900	Connected from to				A/D-L	al Properties .evelsFreq./ ng_resolution	Description / Notes			
GENI	O(28:0)	•	Genera	ral VO Pins, The bold font lines are only valid one for product.							
0	Security bypass	UPP		In	Dig	0-18 V	In/Pull Up	R&D only			
1	EmuPresent	UPP		In	Dig	0-18 V	In / Pull Up	R&D only			
2	GENIO2	UPP		In/Out	Dig	0-1.8 V	In / Pull Up	RF PA identification			
3	GENIO3	UPP		In/Out	Dig	0-1.8 V	In / Pull Down	RF PA identification			
4	LCDRstX	UPP	Display	Out	Dig	0-1.8 V	Out / 0	Display Reset			
5	TXP1	UPP	RF	Out	Dig	0-1.8 V	Out / 0	Ix Power Enable (Low Band)			
6	TXP2	UPP	RF	Out	Dig	0-1.8 V	Out / 0	Tx Power Enable (High Band)			
7	Not Used	UPP		Out	Dig	0-18 V	In / Pull Down				
8	Not Used	UPP		Out	Dig	0-18 V	In / Pull Down				
9	Not Used	UPP	GND	Out	Dig	0-18 V	Pull Down				
10	IRModSD	UPP	IR Module	Out	Dig	0-1.8 V	In / Pull Down	IR Module Shut Down Note: Not used in NKC-1X.			
11	BandSel	UPP	RF/ FMR	Out	Dig	0-18 V	In/Pull Up	Lo/Hi Band Selection (DAMPS) / Extended Band, Selection (PDC)			
12	ARata	UPP		In/Out	Dig	0-18 V	In / Pull Down				
13	JBModuleFJB.	UPP	IR/RF	Out	Dig	0-18 V	In / Pull Up	Fast IR			
14	Not Used	UPP		In	Dig	0-18 V	In / Pull Down				
15	Not Used	UPP		Out	Dig	0-18 V	In / Pull Down				
16	Not Used	UPP		In	Dig	0-18 V	In / Pull Up				
17	Not Used	UPP		In	Dig	0-18 V	In/Pull Up				
18	Not Used	UPP		Out	Dig	0-18 V	In / Pull Down				
19	Not Used	UPP	LPRF/RF	In/Out	Dig	0-18 V	In / Pull Down	LPRF Data In / Accessory Buffer Enable / PAGain			
20	Not Used	UPP	LPRF	Out	Dig	0-18 V	Out/0	LPRF Data Out			
21	Not Used	UPP	LPRF	Out	Dig	0-18 V	In / Pull Up	LPRF Sync /Accessory Mute			
22	Not Used	UPP	LPRF	Out	Dig	0-18 V	In / Pull Down	LPRF Interrupt/Accessory Power Up			
23	FLSWRPX	UPP	FLASH	Out	Dig	0-1.8 V	Out /1	Write Protect, 0-active when protected			
24	Not Used	UPP		Out	Dig	0-18 V	In/Pull Up				
25	Not Used	UPP		In/Out	Dig	0-18 V	In/Pull Up				
26 27	Not Used Not Used	UPP UPP		Out In/Out	Dig Dig	0-18 V 0-18 V	In/Pull Down In/Pull Up				
27 28	Not Used	UPP		Out	Dig	0-18 V	Out/1				
29 29		UPP	UEM	In/Qu	Dig	0/18 V	Out/0	SIMIODAI			
30	Not used Not used	UPP	UEM	In In	Dig	0/18 V	Out / 0	SIMCLK			
31	Not used	UPP	UEM	In	Dig	0/18 V	Out / 1	SIMIOCTRL			

NOKIA

Rip #	Signal Name DAMPS/GS M1900		nected n to	-	PP O	Signal Properties A/DLevelsFreq./ Timing resolution		Description / Notes
KEY	B(10:0) *	Keyb	oard matr	ix				
0	P00	UPP	KEYBOAR D	In	Dig	0/1.8 ∨		Keyboard Matrix Line S1, Not used
1	P01	UPP	KEYBOA RD	ln	Dig	0M.8 V		Keyboard Matrix Line S1
2	P02]	KD					Keyboard Matrix Line S2
3	P03]						Keyboard Matrix Line S3
4	P04							Keyboard Matrix Line S4
5	P10	UPP	KEYBOA RD	ln	Dig	0/1.8 V		Keyboard Matrix Line R0
6	P11		"					Keyboard Matrix Line R1
7	P12							Keyboard Matrix Line R2
8	P13							Keyboard Matrix Line R3
9	P14							Keyboard Matrix Line R4
10	P15	UPP	KEYBOAR D	In	Dig	0/1.8 ∨		Keyboard Matrix Line R5, Not used
						1		
LCD	Ul lines, no b	us *	Display	& ULS	Serial	Interface		
	LCDCamOk	UPP	DISPLAY	Out	Dig	0/1.8 V	4.86 MHz/	Data clock for LCD serial bus, the speed
							2.43 MHz	may vary according the Display and direction requirements
	L CD CamTx Da	1		1/Out	Dig	1	4.86 Mbit/s	Serial Data to/from LCD
						1	/2.43 Mbit/s	
	LCDCSX]		Out	Dig			LCD Chip Select
	GENIO(4)			Out	Dia			LCD Reset, 0-active

Rip #	Signal Name DAMPS/ GSM1900		nected n to		O PP	Signal Properties A/DLevelsFreq./ Timing resolution		Description / Notes
DSP	_MCUTEST	*	Ostrich Te	est Inte	erface	e, for R&D use	e only	
	GENTESTO	UPP	Ostrich Connector	Out	Dig	0/1.8 V		Serial Tx Data to Ostrich Device
	GENTEST1	UPP	Ostrich Connector	Out				Serial Clock to Ostrich Device
	GENTEST2	UPP	Ostrich Connector	In				Serial Rx Data from Ostrich Device
JTAC	G_EMULATI	ON *	Emulator I	Interfa	ice, fo	or R&D use or	ıly	
	JTCLK	UPP	JTAG Connector	In	Dig	0/1.8 V		JTAG Clock
	JTRST	UPP	JTAG Connector	In				JTAG Reset
	JTDI	UPP	JTAG Connector	In				JTAG Data In
	JTMS	UPP	JTAG Connector	In				JTAG Mode Select
	JTDO	UPP	JTAG Connector	Out				JTAG Data Out
	BMU0	UPP	JTAG Connector	1/0				Emulation Control
	BMU1	UPP	JTAG Connector	1/0				Emulation Control

Memory Block Interfaces

Rip #	Signal Name DAMPS/ GSM1900	Conne from		1/1	0	A/DLeve	roperties elsFreq./ esolution	Description / Notes	
MEM	ADD A(23:0)		External Memory Addr/Data Bus					
0- 15	EXTADD A 0:15	Memory	UPP	In/Ou	Dig	0/1.8 V	25 / 150 ns	Burst Flash Address (0:15) & Data (0:15) Direct Mode Address (0:7)	
16- 23	EXTAD 16:23	Memory	UPP	In	Dig	0/1.8 V	25/150 ns	Burst Flash Address (16:23) Direct Mode Data (8:15)	
MEM	CONT(8:0)	•		Exte	rnal N	lemory Contr	ol Bus		
0	ExtVrX	Memory _WE	UPP	In	Dig	0/1.8 V		Write Strobe	
1	ExtRdX	Memory _OE	UPP	In				Read Strobe	
2					1				
3	(FIsBAAX) VPPCTRL	Memory (VPP)	UPP	In				VPP=1.8V ,=> VIO used internally for VPP VPP=5/12V, VPP used	
4	FIsPS	Memory PS	UPP	In/ Out			25 ns	Burst Mode Flash Data Invert Direct Mode Address (17)	
5	FISAVDX	Memory _AVD	UPP	In				Flash Addr Data Valid/ Latch Burst Addr Direct Mode Address (18)	
6	FIsCLK	Memory CLK	UPP	In			50 MHz	Burst Mode Flash Clock Direct Mode Address (19)	
7	FIsCSX	Memory _CE	UPP	In				Flash Chip Select	
8	FIsRDY	Memory RDY	UPP	Out				Ready Signal for Flash	
9	FIsRSTX	Memory _RP	UPP	Out				Flash reset, 0 active, (FLSRPX)	
GEN	IO(28:0)			Gene	eral I/O) Pin used fo	r extra contro	ol .	
23	FLSWRPX	Memory _WP	UPP	Out	Dig	0/1.8 V	0	Write Protect, 0-active protected	
Glob	Globals			Pow	er sup	oplies and pro	oduction test	pad	
	VIO	UEM	FLASH	In	PWR	1.8 V		FLASH power supply	
	VPP	Prod TP 6	FLASH	In	Vpp	0/(1.8) /5/12V		FLASH Programming/erasing voltage/control. 5 or 12 V external voltage for high speed programming	
	GND							Global GND	

Audio Interfaces

NOKIA

Rip #	Signal Name DAMPS/	Connected from to		AUDIO I/O		Signal Properties A/DLevelsFreq./ Timing resolution		Description / Notes
	GSM1900							
HP I	HP INTERNAL AUDIO							
AUDI	O(4:0) *		HP Inter	nal mi	сгорі	none and ea	rpiece IF betwo	een UEM and Mic/Ear circuitry
0	EARP	UEM	Earpiece	Out	Ana	1.25V	Audio	Differential signal to HP internal Earpiece.
1	EARN							Load resistance 32 ohm.
2	MIC1N	Mic	UEM	In	Ana	100mVpp	Audio, AC	Differential signal from HP internal MIC
3	MIC1P					max diff.	coupled to UEM	
4	MICB1	Mic	UEM	Out	V bias	2.1V typ./ <600 uA		Bias voltage for internal MIC
Botto	m Connecto	г	HP Internal microphone IF between Bottom connector and MicÆar circuitry					
	MIC+	Mic	Audio -	In	Ana	2mV nom	Audio	Mic bias and audio signal. Microphone
			UEM	Out	Bias	2V2kohm	DC bias	mounted into bottom connector
	MIC-			In	GND	0 (GND)		AGND coupled to GND at UEM
Еагрі	ece Connect	or Pads	HP Inter	nal IF	betwe	een Earpiec	e and Mic/Ear	circuitry
	"1"~EARP	EAR	Audio - UEM-	Out	Ana	1.25V	Diff DC coupled	Differential audio signal to earpice 32 ohm
	"2"~EARN		EAR P/N				Audio	
			•					

Rip #	Signal Name DAMPS/ GSM1900		ected to		DIO 'O	Signal Properties A/DLevelsFreq./ Timing resolution		Description / Notes
EXT	ERNAL A	UDIO IN	TERFAC	CE				
XAUE)IO(9:0)*		External	Audio	o IF b	etween UEI	M and X-audio	circuitry
0	HEADINT SysCon/HS		UEM	Out	Dig	0/2.7V		Output to UEM for Headset Connector "HeadInt" Switch
1	HF	UEM	SysCon/H Set	In	Ana	1.0Vpp bias 0.8V	Audio	External Earpiece Audio Signal
2	HFCM				Ana	0.8 Vdc]	Reference for DC coupled external Earpiece
3	MICB2	UEM	SysCon / Headse t	Out	V bias	2.1V typ/ 600 uA		Bias voltage for external MIC
4	MIC2P	SysCon/	UEM	Out	Ana	200mVpp	Audio	Differential signal from external MIC
5	MIC2N	Headset				max diff		
6	HOOKINT	Sys Con	UEM	Out	Ana/ Digi	02.7V	DC	HS Button interrupt, External Audio Accessory Detect (EAD)
Botto	ım Connecto	ЭГ	HP Internal microphone IF between Bottom co					onnector and Mic/Ear circuitry
	XMICP	HS/HF Mic			Ana	2/60mV nom diff	Audio	Headset Mic bias and audio signal 2mV nominal. HF Mic signal 60mV nominal. Differential symmetric input.
				Out	Bias	2.1V bias/ 1kohm	DC bias	Accessory detection by bias loadind (EAD
						T KOTIITI		channel of slow ADC of UEM)
								Hook interrupt by heavy bias loading
	XMICN			In	Ana	2/60mV nom diff	Audio	Mic - connected to GND trough lower part of splitted symmetric load resistor (2 x 1
						GND/ 1kohm		kohm)
	XEARP	HS/HF EAR/ Amp.	Audio - UEM	In	Ana	100 mV nom diff	Audio	Quasi differential DC-coupled earpiece/HF amplifier signal to accessory. DC biased to 0.8V; XEARN a quiet reference although
	XEARN	Διτιφ.						have signal when loaded due to internal series resistor.
	INT	Switch	Audio - UEM	In	Dig	0/2.7V		HS interrupt from bottom connector switch when plug inserted

Key/Display blocks

Keyboard Interface

NOKIA

Rip #	Signal Name DAMPS/G SM1900	Conne from			EY O	Signal Properties A/DLevelsFreq./ Timing resolution		Description / Notes
KEYE	3(10:0)		Keyboa	ard m	atrix, I	Roller key		
0	P00	Not used	UPP	Out	Dig	0/1.8 V		
1	P01	Key Board						Key Board Matrix Line
2	P02	Key Board						Keyboard Matrix Line
3	P03	Key Board						Keyboard Matrix Line
4	P04	Key Board						Keyboard Matrix Line
5	P10	Key Board						Keyboard Matrix Line
6	P11	Key Board						Keyboard Matrix Line
7	P12	Key Board						Keyboard Matrix Line
8	P13	Key Board						Keyboard Matrix Line
9	P14	Key Board						Keyboard Matrix Line
10	P15	Not used						
PWR	_KEY		Power	Key,	not a	member of th	ne keyboard r	natrix
	PWR_KEY Power key		UEM	Out	Dig	0∧batt		Power Key, not a member of the keyboard matrix

Display Interface

Rip #	Signal Connected Name from to DAMPS/G SM1900			Ι.	play O	100 Lovels From		Description / Notes	
LCDI	JI(2:0)		Display a	& UIS	erial	Interface			
0	LCDCAMCLK	UPP	Displ.	In	Dig	0/1.8 ∨	1 MHz	Clock to LCD	
1	LCDCAMTXD A	UPP	Displ.	In/ Out	Dig	0/1.8 ∨	1 MHz	Data to/from LCD	
2	LCDCSX	UPP	Displ.	In	Dig	0/1.8 V		LCD Chip Select	
GENIO(28:0) General I/O I				I/O Pii	ns				
4	LCDRstX	UPP	Display	Out	Dig	0/1.8 V	Out / 0	Display Reset, 0-active	

RF Module

Requirements

The RH-40 RF module supports the following systems:

- AMPS
- TDMA800

Hence, the minimum transceiver performance requirements are described in TIA/EIA-136-270. The RH-40 RF must follow the requirements in the revision A. The EMC requirements are set by FCC 47CFR 15.107 (conducted emissions), 15.109 (radiated emissions, idle mode) and 22.917 (radiated emissions, call mode).

Design

The RF design is centered around the Safari RF-IC. The Safari consists of receivers, transmitter IF parts, highband TX upconverter, lowband TX upconverter and all PLL's, lowband LNA, TX VHF VCO active part and loopfilter.

RF filtering, power amplifier and TX power detection circuitry are left outside Safari.

The phone comprises of one single-sided, six-layer PWB. A single multiwall RF shield is used and this sets the maximum component height to 2.0mm. An internal antenna is located on the top of the phone.

Software Compensations

The following software compensations are required:

- Power levels temperature compensation
- Power levels channel compensation
- Power level reduction due to low battery Voltage
- TX Power Up/Down Ramps
- PA's bias reference currents vs. power, temp and operation mode
- RX IQ DC offsets
- RSSI channel compensation

Main Technical Characteristics

RF Frequency Plan

The RH-40 frequency plan is shown in the following figure. A 19.44 MHz VCTCXO is used

for UHF and VHF PLLs and as a baseband clock signal. All RF locals are generated in PLLs.

Due to AMPS mode simultaneous reception and transmission, TX and RX IF frequencies are exactly 45MHz apart from each other. RXIF is 135.54 MHz and TXIF 180.54 MHz. RXIF frequency is set so that it is not a multiple of either VHF's comparison frequency (120k).

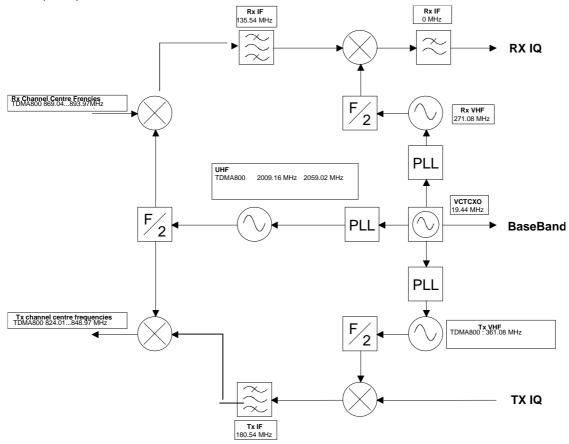


Figure 11: RF Frequency Block Plan

Due to the AMPS mode, simultaneous reception and transmission, TX and RX IF frequencies are exactly 45MHz apart from each other. RXIF is 135.54 MHz and TXIF 180.54MHz. The RXIF frequency is set so that it is not a multiple of either of VHF's comparison frequency (120k).

System Module

DC Characteristics

Regulators

The regulator circuit is the UEM and the specifications can be found in the following

Regulator name	Output voltage (V)	Regulator Max. current (mA)	RF total 1GHz	RF total 2GHz
VR1 a/b	4.75 ± 3%	10	4	4
VR2	2.78 ± 3%	100	100	76
VR3	2.78 ± 3%	20	2	2
VR4	2.78 ± 3%	50	23	24
VR5	2.78 ± 3%	50	5	5
VR7	2.78 ± 3%	45	40	45
IPA	2.7 max.	1 ± 10% 3 ± 4% 3.5 ± 4% 5 ± 3%	1.3 - 5.0	1.3 – 3.7
VREFRF01	1.35 ± 0.5%	0.12	0.05	0.05
VFLASH1	2.78 ± 3%	70	1	1

Receiver

The receiver shows a superheterodyne structure with zero 2nd IF. Most of the receiver functions are integrated in the RF ASIC. The only functions out of the chip are duplexers and SAW filters.

An active 1st downconverter sets naturally high gain requirements for preceding stages. Hence, losses in very selective frontend filters are minimized down to the limits set by filter technologies used and component sizes. LNA gain is set up to 16dB, which is close to the maximum available stable gain from a single stage amplifier. LNAs are not exactly noise matched in order to keep passband gain ripple in minimum. Filters have relative tight stopband requirements, which are not all set by the system requirements but the interference free operation in the field. In this receiver structure, linearity lies heavily on mixer design. The 2nd order distortion requirements of the mixer are set by the 'half IF' suppression. A fully balanced mixer topology is required. Additionally, the receiver 3rd order IIP tends to depend on active mixer IIP3 linearity due to pretty high LNA gain.

IF stages include a narrowband SAW filter on the 1st IF and an integrated lowpass filtering on zero IF. SAW filter guarantees 14dBc attenuation at alternating channels, which gives acceptable receiver IMD performance with only moderate VHF local phase noise performance. The local signal's partition to receiver selectivity and IMD depends then mainly on the spectral purity of the 1st local. Zero 2nd IF stages include most of receivers signal gain, AGC control range and channel filtering.

CCS Technical Documentation

ITEM	NMP Requirement TDMA, AMPS 800
RX frequency range, DAMPS 800	869.01 893.97
LO frequency range	2009.1 2059.2
1st IF frequency	135.54
Channel NBW, RF	28.6
IF 1 3dB roll off min. frequency (+-?f)	13
2nd IF min. 3dB bandwidth	16 / IQ-branch
Max total group delay at 3dB bandwidth	
C/N for sensitivity, digital analog	7 3.5
C/I for selectivity, digital analog	8 4
Sensitivity, digital mode static ch (BER < 3%) ANALOG MODE (sinad >12dB)	-110 (min.) -116 (min.)
Adjacent channel selectivity, digital analog	13 16*
Alternate channel selectivity, digital analog	45 65*
IMD attentuation selectivity, digital analog close spaced (60/120) analog wide spaced (330/660)	65 65* 70*
Cascaded NF, digital analog	< 9.5 < 9.5
Cascaded IIP 3, digital 120/240, 240/480 kHz analog 60/120 kHz analog 330/660 kHz	> -7.7 > -17* > -8*
Available receiver gain digital/analog	85 (min.)
RF front end gain control range, AGC 1 step	20
1st IF gain control range, AGC 2 step	30
R X 2nd IF gain control range, 8x6dB steps	42
Min signal level at RX-ADC input @ sensitivity digital analog	-31 -25
Input dynamic range	-11620
Gain relative accuracy in receiving band **	2

ITEM	NMP Requirement TDMA, AMPS 800
Gain absolute accuracy in receiving band **	4
* referenced to the sensitivity level ** After production alignment	

AMPS/TDMA 800 MHz Front End

Typical values.

Parameter	MIN	TYP	MAX	Unit/Notes
Diplexer input loss	0.35	0.4	0.45	dB
Duplexer input loss	2.5	3	4.1	dB
LNA gain: High gain mode Low gain mode	16 -4.5	16.5 -4	17.3 -3.8	dB dB
LNA noise figure*	1.4	1.7	2.3	dB
LNA 3rd order intercept (IIP3)*	-4	-3	-1.5	dBm
Bandfilter input loss	1.5	2	2.5	dB
Mixer gain*	6	7.5	8	dB
Mixer NF*	8	9	10.5	dB
Mixer IIP3*	4	4.5	5	dBm
Total:				
Gain	18.2	18.6	20	dB
Noise Figure	4.6	5.5	7	dB
3rd order intercept (IIP3)	-8.9	-7.5	-6.8	dBm
*see Safari spec/measurements				

Parameter	Minimum	Typical/ Nominal	Maximum	Unit/Notes
Total				
Power up time			0.1	ms
Noise figure, total			9.5	dB
3rd order input intercept point		-25		dBm
Max voltage gain, Mixer + 2nd IF (IF+2nd AGC max)	78.5			dB
Min voltage gain, Mixer + 2nd IF (IF+2nd AGC min.)			6	dB

NOKIA

Parameter	Minimum	Typical/ Nominal	Maximum	Unit/Notes
Gain charge, Mixer+2nd IF		1.4	0.9	dB, temp -30+85 C
IQ mixers + AMP2	•	-		
RF input impedance differential		1.2		kohm/pF
RF input frequency range		135.54		MHz
Conversion gain @ RI=1kohm	23.5	24	24.5	dB
IF AGC gain range (5x6 dB)	30			dB
IF AGC gain step (5 steps)		6		dB
IF AGC gain error relative to max gain	-0.5		+0.5	dB
AMP2 gain		18		dB
-3dB frequency	21	25	29	kHz
LPF: 4th order Chebysev	•	-		
LPF gain		0		dB
Corner frequency tuning range	14		17	kHz
Corner frequency tuning step			1	kHz
Attentuation @ 30 kHz *	24			dB
Attentuation @ 60 kHz *	55			dB
Attentuation @ 120 kHz *	80			dB
Attentuation @ 240 kHz *	60			dB
Attentuation @ >480 kHz *	40			dB
AGC				•
AGC gain range	-6		36**	dB
AGC gain range step 7 steps		6		dB
AGC gain error relative to max gain	-0.5		+0.5	dB
Max IF/2nd IF buffer output level			3	V pp (differential)

Frequency Synthesizers

RH-40 synthesizer consists of three synthesizers: one UHF synthesizer and two VHF synthesizers. UHF synthesizer is based on integrated PLL and external UHF VCO, loop filter, and VCTCXO. Due to the RX and TX architecture this UHF synthesizer is used for down conversion of the received signal and for final up conversion in the transmitter. A common 2GHz UHFVCO module is used for operation on both low and highband. Frequency

divider by two is integrated in Safari.

Two VHF synthesizers consist of: RX VHF Synthesizer includes integrated PLL and VCO and external loop filter and resonator. The output of RX-VHF PLL is used as LO signal for the second mixer in receiver. TX VHF Synthesizer includes integrated in Safari.

Transmitter

The transmitter RF architecture is up-conversion type (desired RF spectrum is low side injection) whit (RF-) modulation and gain control at IF. The IF frequency is 180.54MHz. The cellular band is 824.01-848.97MHz.

Common IF

The RF-modulator is integrated with PGA (Programmable Gain Amplifier) and IF output buffer inside Safari T RFIC-chip. I- and Q-signals, that are output signals from BB-side SW IQ-modulator, have some filtering inside Safari before RF-modulation is performed. The required LO-signal from TXVCO is buffered with phase sifting in Safari. After modulation ($\pi/4$ DQPSK or FM) the modulated IF signal is amplified in PGA.

Cellular Band

At operation in cellular band the IF signal is buffered at IF output stage that is enabled by TXP1 TX control. The maximum linear (balanced) IF signal level to 50Ω load is about – 8 dBm.

For proper AMPS-mode receiver (duplex) sensitivity IF signal is filtered in SAW-filter before up-conversion. The upconverter mixer is actually a mixer with LO and output driver being able to deliver about +6dBm linear output power. Ther mixer is inside TAC RF IF. Note, that in this point, term linear means -33dB ACP. The required LO power is about -6dBm. The LO signal is fed from Safari.

Before power amplifier RF signal is filter in band filter. The typical insertion loss is about -2.7dB, and maximum less than -3.0dB. Input and output return losses are about -10dB.

Power amplifier is $50\Omega/50\Omega$ module. It does not have own enable/disable control signal, but it can be enabled by bias voltage and reference bias current signals. The gain window is +27 to +31dB and linear output power is +30dBm (typical condition) with -28dB ACP. The nominal efficiency is 50%.

Power Control

For power monitoring there is a power detector module (PDM) build up from a coupler, a biased diode detector, and an NTC resistor. RF signals from both bands are routed via this PDM. The RF isolation between couplers is sufficient not to loose filtering performance given by duplex filters.

The diode output voltage and NTC voltage are routed to BB A/D converters for power control purpose. The TX AGC SW takes samples from diode output voltage and compares that value to target value, and adjust BB I-and Q-signal amplitude and/or Safari PGA settings to keep power control in balance.

NTC voltage is used for diode temperature compensation and for thermal shut down when radio board's temperature exceeds +85°C.

False TX indication is based on detected power measurement when carrier is not on.

The insertion loss of coupler is -0.42dB (max) at cellular band and -0.48dB (max) at PCS band. Typical values for insertion losses are about -0.2dB. The filtering performance of diplexer is taken in account in system calculations.

(For AMPS mode PL2 24.5 dBm, PL2 27.3 dBm for digital mode.)

Antenna Circuit

NOKIA

Here the antenna circuit stands for duplex filters and "thru diplexer". The cellular band duplex filter is band pass type SAW filter with typical insertion loss about -2.0dB. Typical insertion loss of "thru diplexer" is about -0.1dB.

RF Performance

The output power tuning target for power level 2 after diplexer (or after switch for external RF) is +27.3dB for digital modes and +24.5 for analog mode. See table below. Modulation accuracy and ACP will be within limits specified in IS-136/137.

Power Level	PGA	Pout		
		TDMA800	AMPS	
2	3-4	27.3	24.5	
3	4	23.3	21	
4	5	19.3	17.5	
5	6	15.3	13.5	
6	7	11.3	9.5	
7	8	7.3	5.5	
8	9	3.3	ı	
9	10	-0.7		
10	11	-4.7	-	

Antenna

The RH-40 antenna solution is an internal single resonance PIFA-antenna. This antenna has a common feeding point for both antenna radiators, which results in the need for a diplexer. In a singleband transceiver, a SMD compatible through chip can be used.

System Module

RH-40

CCS Technical Documentation